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Abstract
Background: Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen
implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-
phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered
disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways
and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An
understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective
utilization of this antimicrobial and possibly lead to the development of more effective disinfectant
treatments.

Results: Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P.
aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the
transcription of genes encoding ribosomal, virulence and membrane transport proteins after both
treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of
swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the
transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated.
Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS)
of RNA polymerase were downregulated after both treatment times.

Conclusion: Results from this study indicate that after 20 minutes of exposure to OPP, genes that have
been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study
also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by
which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving
the upregulation of translation leading to the increased synthesis of membrane related proteins and
virulence proteins is possibly induced after both treatment times. In addition, cell wall modification may
occur due to the increased synthesis of lipopolysaccharide after 60 minutes exposure to OPP. This gene
expression profile can now be utilized for a better understanding of the target cellular pathways of OPP
in P. aeruginosa and how this organism develops resistance to OPP.
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Background
Hospital-acquired infections caused by opportunistic
pathogens present a serious threat to public health. Noso-
comial infections are estimated to occur in 5% of all
acute-care hospitalizations and in more than 2 million
cases each year [1]. P. aeruginosa is the most common
opportunistic pathogen responsible for hospital acquired
burn wound infections, urinary tract infections and venti-
lator-associated pneumonia [2-5]. In cystic fibrosis
patients, P. aeruginosa is implicated in chronic lung infec-
tions, leading to high rates of illness and death [6]. In the
increasing AIDS population, 50% of deaths have been
linked P. aeruginosa bacteremia [7]. The increasing preva-
lence of nosocomial infections has been associated to the
growing problem of antimicrobial and detergent-resistant
pathogens [8,9]. As such, proper use of effective disinfect-
ing strategies in hospitals is necessary to abate this grow-
ing problem [10].

Ortho-phenyphenol is used as a fungicide and as an anti-
bacterial agent in a wide variety of settings. OPP is used as
a hospital disinfectant, and as a fungicide and disinfectant
for wood preservation, the treatment of vegetables and cit-
rus fruits and textile production [11,12]. Results from tox-
icological studies indicate that OPP administered in diet,
leads to the formation of tumors in the urinary bladder of
rats [13]. OPP has also been reported to cause sister-chro-
matid exchanges and chromosomal aberrations in Chi-
nese hamster ovary cells (CHO-K1 cells) [14].

Despite the aforementioned detrimental effects of OPP
and its many uses to combat microbial contamination, to
our knowledge, the mechanism of action of OPP on bac-
terial pathogens has not been elucidated. Moreover, the
use of OPP as a hospital disinfectant necessitates an
understanding of the cellular functions that it affects in
different pathogenic bacteria. This will facilitate the deter-
mination of its mode of action such that it can be more
effectively utilized. Further, such information will expe-
dite the development of efficient antimicrobials which
target specific pathogenic bacteria and exert nominal
effects on other species. In previous studies, whole
genome microarrays have been successfully used to ana-
lyze the global transcriptomic response of P. aeruginosa to
different antimicrobials. From these studies, specific cellu-
lar functions affected by the application of these antimi-
crobials were elucidated through the identification of
signature genes that were up or downregulated [15-19].

To our knowledge, for the first time, we investigated the
genome-wide changes in P. aeruginosa gene transcription
upon exposure to 0.82 mM OPP for 20 and 60 minutes
using Affymetrix P. aeruginosa GeneChip arrays. Our find-
ings show that: (i) the transcription of genes encoding
ribosomal, virulence and membrane proteins (including

membrane transport systems) were upregulated after 20
and 60 minutes (ii) the transcription of genes that may
allow transient switches to anaerobic respiration and
swarming motility as stress responses were upregulated
after 20 minutes (iii) after 60 minutes, amino acid anabo-
lism and lipopolysaccharide synthesis were upregulated.
(iv) after both 20 and 60 minutes of OPP treatment, the
transcription of the genes encoding the ribosome modu-
lation factor and the alternative sigma factor, RpoS were
significantly downregulated.

Results and discussion
Growth inhibition of P. aeruginosa by OPP
In order to determine a suitable sublethal concentration
of OPP that will produce strong growth inhibition, P.
aeruginosa was exposed to six concentrations of OPP dis-
solved in DMSO (0.58, 0.82, 0.94, 0.99, 1.05 and 1.18
mM), and growth inhibition was monitored at intervals
of 10 minutes for 60 minutes. Note that the concentra-
tion of OPP that inhibits 90% of P. aeruginosa isolates
(MIC90) has been reported to be 2000 mg/L (1.18 mM)
[20]. In figure 1, the highest concentration of OPP used
(1.18 mM) produced marked growth inhibition. There-
fore, a lower sublethal concentration of 0.82 mM was
selected as the test concentration since this concentra-
tion caused a non-drastic sublethal growth inhibition as
seen in figure 1.

Changes in the transcriptional profiles of P. aeruginosa in 
response to OPP
Four separate microarray experiments were performed in
the absence (control) and in the presence (experimental)
of 0.82 mM OPP. In order to investigate early and late
changes in transcription in response to OPP, RNA was iso-
lated after 20 and 60 minutes exposure to 0.82 mM OPP.
To determine which genes showed significant changes in
transcript level in response to OPP, the following criteria
were applied: (i) the p-value for a Mann-Whitney test
should be less than 0.05, (ii) an absolute fold change in
transcript level should be equal to or greater than 2 (iii) a
gene should have a present or marginal call (Affymetrix,
Inc.) from 50% or more replicates on both experimental
and control replicate sets. After a one-way ANOVA was
performed, 1012 out of the 5900 genes that make up the
P. aeruginosa genome were found to be statistically signif-
icant. Further analysis revealed that a total of 509 genes
showed statistically marked upregulation (≥ 2-fold) or
downregulation (≤ 2-fold) after 20 minutes and after 60
minutes exposure to OPP. The expression levels of the
5900 genes in the P. aeruginosa genome obtained from
control experiments and after treatment with OPP (20
and 60 minutes) have been deposited in NCBI's gene
Expression Omnibus [21] and can be accessed through
the GEO series accession number: GSE10604 [22] (addi-
tional file 1).
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Functional classification of upregulated and 
downregulated genes
In order to relate the up and downregulated genes to their
functions, the 509 statistically significant genes were clas-
sified into different functional classes. Functional classes
were obtained from the P. aeruginosa Community Annota-
tion Project [23,24]. Figure 2 illustrates the grouping of up
and down regulated genes at 20 and 60 minutes into dif-
ferent functional classes and the total number of genes in
each class for the two treatment times. Note that a total of
137 genes were classified as "hypothetical, unclassified,
unknown".

Figure 2 illustrates that in general at 60 minutes, there
were more upregulated and downregulated genes in the
functional classes, when compared to 20 minutes. In par-
ticular, genes belonging to the functional classes of "adap-
tation and protection", amino acid biosynthesis and
metabolism", "biosynthesis of cofactors, prosthetic
groups and carriers", "carbon compound catabolism",
"cell division", "cell wall/LPS/capsule", "central interme-
diary metabolism", "chaperones and heat shock pro-

teins", "DNA replication, recombination and repair",
"energy metabolism", "fatty acid and phospholipid
metabolism", "membrane proteins", "nucleotide biosyn-
thesis and metabolism", "putative enzymes", "transcrip-
tion", "transcriptional regulators", "translation, post-
translational modification, degradation", and "transport
of small molecules contained significantly more upregu-
lated genes at 60 minutes.

Among the downregulated genes, the functional classes
of: "adaptation and protection", "amino acid biosynthesis
and metabolism", "carbon compound catabolism" and
"energy metabolism" contained significantly more down-
regulated genes at 60 minutes compared to 20 minutes.
The marked differences between the numbers of upregu-
lated and downregulated genes after 20 minutes exposure
compared to 60 minutes of treatment may be related to
the growth inhibition observed following exposure to
OPP.

Grouping of functionally classified up and down regulated 
genes
To further analyze the 509 upregulated and downregu-
lated genes, we removed the 137 genes belonging to the
class designated as "hypothetical, unclassified,
unknown". The remaining 372 genes were placed in six
groups based on their transcription directions. Figure 3
illustrates the six different groups and the total number of
genes in each group. Group I contains genes that were
upregulated after 20 and 60 minutes. Group II is made up
of genes that were upregulated after 20 minutes only.
Group III contains genes that were downregulated upon
20 minutes of exposure to OPP. Group IV contains genes
that were upregulated after 60 minutes only. Group V is
made up of genes that were downregulated only after 60
minutes exposure to OPP. Group VI contains genes that
were downregulated after both 20 and 60 minutes expo-
sure to OPP. All of the genes discussed in this report can
be found in additional file 2. However, for clarity and to
facilitate the reading of this report, the genes discussed
below in the six groups are indicated in table 1.

Group I: genes upregulated at 20 and 60 minutes exposure
Group 1 consisted of genes that were induced both at 20
and 60 minutes exposure to OPP (additional file 2). The
most distinctive functional class in this group was "trans-
lation, post-translational modification and degradation"
which contained 45 genes (additional file 2). This func-
tional class contained several 30 and 50S ribosomal pro-
teins. The two most upregulated 30 and 50S ribosomal
proteins are indicated on table 1. A complete list of ribos-
omal proteins in this group can be found in additional file
2. Group 1 also contained genes coding for translation ini-
tiation factors: PA2619, PA4744 and PA 2743 (infA, infB
and infC), elongation factors G and Ts: PA4266, PA3655

Growth inhibition of P. aeruginosa treated with orthophenyl-phenol (OPP)Figure 1
Growth inhibition of P. aeruginosa treated with 
orthophenylphenol (OPP). Cell density was monitored as 
the OD600 in ten minute intervals. The OPP concentrations 
were as follows: 0 mM control with DMSO (filled square), 
0.58 mM (filled triangle), 0.82 mM (inverted filled triangle), 
0.94 mM (filled diamond), 0.99 mM (filled circle), 1.05 mM 
(empty square), 1.18 mM (empty triangle). Each data point 
was derived as the average of three separate experiments 
and the error bars represent the standard deviation 
obtained.
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(fusA1, tsf) and peptide chain release factor: (prfA)
PA4665 (table 1). The upregulation of these genes after
both 20 and 60 minutes suggests that protein synthesis is
affected in P. aeruginosa upon exposure to OPP and even
after prolonged exposure (60 minutes). This may reflect a
cellular protective response, whereby proteins involved in
stress response are synthesized. The upregulation of the
cold shock protein: PA4743 (rbfA) and the heat shock pro-
tein: PA4263 (suhB) which are involved in stress response
supports this hypothesis. The observed upregulation of
translation may also indicate an increase in the synthesis
of virulence factors, which can be produced in response to
environmental stress. Previous studies have suggested that
the pathogenesis of Staphylococcus aureus is stimulated as a
protective response against antimicrobial treatments
[25,26]. In line with this hypothesis was the upregulation
of PA5117 (typA), which has been suggested to be relevant
for pathogenesis in Escherichia coli when it is tyrosine
phosphorylated [27].

Among the genes in the functional class of "membrane
proteins" in this group, we observed three proteins of the

SecY system: PA4243 (secY), PA4276 (secE) and PA4747
secG) were upregulated. In gram negative bacteria, the Sec
system is utilized for the secretion of degradative
enzymes, virulence factors, toxins and proteins across the
cytoplasmic membrane and for the insertion of proteins
into the cytoplasmic membrane [28], allowing for growth
and survival. The concomitant upregulation of genes
involved in the Sec system and genes involved in transla-
tion is possibly indicative of the transport of synthesized
proteins across the cell membrane.

Concurrent with the induction of genes of the Sec system
was the upregulation of genes involved in membrane
associated transport of small molecules notably, PA4687:
ferric iron-binding periplasmic protein (hitA), PA1964:
probabale ATP-binding component of ABC transporter,
PA2760: probable outer membrane protein precursor and
PA4688: Iron III-transport system permease (hitB). These
results are in agreement with those of a recent study that
demonstrated that the hitA and hitB genes were 2- to 8-
fold upregulated in P. aeruginosa in response to a two hour
exposure to 10 mM hydrogen peroxide [17]. HitA, HitB

Functional classification of statistically significant upregulated (filled bars) and downregulated (empty bars) genes after 20 min-utes and 60 minutes exposure to 0.82 mM OPPFigure 2
Functional classification of statistically significant upregulated (filled bars) and downregulated (empty bars) 
genes after 20 minutes and 60 minutes exposure to 0.82 mM OPP. The numbers in parentheses indicate the total 
number of genes for each functional class in both groups (a total of 509 genes).
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and HitC (a nucleotide binding protein) encoded by the
hitABC operon facilitate iron acquisition from the peri-
plasm [29]. In contrast, a previous study indicated that the
hitAB genes were downregulated approximately 7- and 6-
fold in P. aeruginosa treated with sodium hypochlorite for
20 minutes [18]. Therefore the upregulation of hitA (ferric
iron-binding periplasmic protein) and hitB (Iron III-trans-
port system permease) in this study is suggestive of active
iron uptake, which is essential for bacterial growth and an
important determinant of bacterial virulence [29].

It is worth noting that eight type IV pilus assembly proteins
belonged to this group including pil C, D, G, I, M, N, O and
P. Type IV pili have been implicated in the pathogenicity of
gram negative bacteria, and mediate cellular functions such
as twitching motility, host-cell adhesion and cell signaling
[30]. The expression of type IV pili is necessary for coloni-
zation and maturation of P. aeruginosa biofilms on a variety
of surfaces [31]. Considering that the cellular functions
noted above generally mediate virulence and cell survival,
it is therefore possible that the upregulation of these genes
may be associated with protection and concomitant sur-
vival of P. aeruginosa when treated with OPP.

Five genes involved in fatty acid biosynthesis (fabA, B, D,
G and Z) were also categorized under group I. A previous
study that investigated the proteomic response of P. putida
to phenol-induced stress noted that several enzymes
involved in fatty acid biosynthesis, including FabB and
FabH2 were upregulated approximately 2 fold and 4 fold
respectively when treated with phenol [32]. Although
FabA was not mapped in the aforementioned study, it was
suggested that under phenol stress, the expression level of
FabA correlated with the upregulation of FabB. Our study
corroborates this theory, as both fabA and fabB were
upregulated approximately 3 and 4 fold respectively fol-
lowing 60 minutes exposure to OPP (t). In contrast, fabH2
was downregulated in P. aeruginosa after 20 minutes of
treatment with peracetic acid [16].

With respect to energy metabolism, the genes: PA5561
(atp1), PA2354, (probable cytochrome) and PA5556 (ATP
synthase alpha chain), which are involved in ATP synthe-
sis associated with oxidative phosphorylation and the
electron transport chain were upregulated at both 20 and
60 minutes. This result suggests that oxidative phosphor-
ylation is possibly a major route for energy production in
P. aeruginosa treated with OPP.

Group II: genes upregulated upon 20 minutes exposure
Group II contained 13 genes, the least number of genes
among the six groups (additional file 2). The most upreg-
ulated gene in this group was norB (nitric oxide reductase
subunit B), with an approximately four fold increase in
transcription (table 1). The nitric oxide reductase enzyme
is a membrane bound cytochrome bc complex which has

been reported to be expressed under anaerobic conditions
in P. stutzeri [33-35]. NorB is the catalytic component of
the NorBC complex and harbors low and high spin and
low spin ferric heme proteins [36]. Recent experimental
evidence suggests that coupled with electron transfer, pro-
ton uptake by NorB occurs from the periplasmic side of
the bacterial cell membrane [33]. As such, nitrate can be
used as the terminal electron acceptor instead of oxygen
under anaerobic conditions, with nitric oxide being one
of the intermediates in the reduction of nitrate to dinitro-
gen in the denitrification process [33]. Nitric oxide pro-
duced during denitrification is highly toxic to the cell and
relies on the scavenging activity of nitric oxide reductase
for cell survival [34]. A previous study [37] demonstrated
that several genes involved in anaerobic respiration were
upregulated in S. aureus after 20 minutes of exposure to
peracetic acid, suggesting the possibility of a shift to anaer-
obic respiration in response to oxidative stress.

Another gene of interest in this group was PA3479: rham-
nosyl transferase chain A (rhlA). The rhlAB operon cata-
lyzes the first gylcosyl transfer reaction required for the
synthesis of rhamnolipids [38,39]. Rhamnolipids have
been found in high levels in the sputum of cystic fribrosis
patients and are classified as virulence factors [40]. Rham-
nolipids have been postulated to act as biosurfactants that
facilitate surface colonization [41]. The multicellular
nature of both biofilms and cells undergoing swarming
motility indicate that both phenomena are related
[42,43]. Rhamnosyl transferase chain A has been found to
be critical for the exhibition of swarming motility by P.
aeruginosa, which is important for environmental adapta-
tion [44,45]. It has also been demonstrated that P. aerugi-
nosa mutants lacking type IV pili and flagella are unable to
swarm [45]. The upregulation of type IV pili assembly
genes at 20 and 60 minutes (group I) supports the possi-
bility that P. aeruginosa treated with OPP may exhibit
swarming motility as a stress response. The finding that
the rhlA gene exhibited no change in its expression level at
60 minutes also supports this hypothesis. Moreover, the
probable purine binding chemotaxis protein, PA0177,
which belongs to the group of flagellar assembly proteins,
was also upregulated in this group.

Previous studies have revealed that low iron levels signifi-
cantly stimulated swarming motility, thereby preventing
biofilm formation [44,46]. From this observation, it was
hypothesized that in an unfavorable nutritional environ-
ment, biosurfactant production and surface motility are
over expressed in order to prevent P. aeruginosa from set-
tling into a biofilm [44]. Our results are in line with this
hypothesis, considering that the ferric iron-binding peri-
plasmic protein and the iron III-transport system per-
mease (hitA and hitB) were upregulated after both 20 and
60 minutes (group I) of exposure to OPP, suggesting
active iron uptake.
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Symbol Functional class

Transport of small 
molecules

ne Transport of small 
molecules

hitA Transport of small 
molecules

or infC Translation, post-
translational modification, 
degradation

or infA Translation, post-
translational modification, 
degradation

fusA1 Translation, post-
translational modification, 
degradation

tsf Translation, post-
translational modification, 
degradation

tor 1 prfA Translation, post-
translational modification, 
degradation

1 rplA Translation, post-
translational modification, 
degradation

2 rpsB Translation, post-
translational modification, 
degradation

or infB Translation, post-
translational modification, 
degradation

18 rpsR Translation, post-
translational modification, 
degradation

29 rpmC Translation, post-
translational modification, 
degradation
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73 Table 1: List of significantly up or downregulated P. aeruginosa genes that are discussed in this report

Affymetrix ORF # Probe ID a20 minutes a60 minutes Description

bFold change P value bFold change P value

Group I: Upregulation (20 min) – Upregulation (60 min)
PA1964_at PA1964 2.029 0.0112 2.381 0.0112 probable ATP-binding 

component of ABC 
transporter

PA2760_at PA2760 2.152 0.0416 2.94 0.0416 probable outer membra
protein precursor

PA4687_hitA_at PA4687 2.219 0.00808 2.069 0.00808 ferric iron-binding 
periplasmic protein HitA

PA2743_infC_at PA2743 2.044 0.000327 2.634 0.000327 translation initiation fact
IF-3

PA2619_infA_at PA2619 2.14 0.000526 3.644 0.000526 translation initiation fact

PA4266_fusA1_at PA4266 2.18 0.012 3.88 0.012 elongation factor G

PA3655_tsf_at PA3655 2.197 0.017 5.495 0.017 elongation factor Ts

PA4665_prfA_at PA4665 2.426 0.00398 2.774 0.00398 peptide chain release fac

PA4273_rplA_at PA4273 2.725 0.0349 6.018 0.0349 50S ribosomal protein L

PA3656_rpsB_at PA3656 2.543 0.00953 7.267 0.00953 30S ribosomal protein S

PA4744_infB_at PA4744 2.783 0.0134 3.826 0.0134 translation initiation fact
IF-2

PA4934_rpsR_at PA4934 2.894 0.000276 6.619 0.000276 30S ribosomal protein S

PA4255_rpmC_at PA4255 2.927 0.00331 6.655 0.00331 50S ribosomal protein L

PA4528_pilD_at PA4528 2.144 0.014 2.65 0.014 type 4 prepilin peptidase
PA0408_pilG_at PA0408 2.294 0.0144 4.026 0.0144 twitching motility protei

PilG
PA5041_pilP_at PA5041 2.169 0.00817 2.232 0.00817 type 4 fimbrial biogenes

protein PilP
PA0410_pilI_at PA0024 2.188 0.0484 2.267 0.0484 twitching motility protei



Pa
ge

 7
 o

f 1
8

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

is pilO Motility & Attachment
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m hitB Membrane proteins

secG Membrane proteins
secY Membrane proteins
secE Protein secretion/export 
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fabG Fatty acid and phospholipid 

metabolism
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n atpA Energy metabolism
Energy metabolism

atpI Energy metabolism
SuhB Adaptation, protection

 A rbfA Adaptation, protection
TypA Adaptation, protection

norB Energy metabolism
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PA5042_pilO_at PA5042 2.26 0.000345 2.056 0.000345 type 4 fimbrial biogenes
protein PilO

PA4527_pilC_at PA4527 2.27 0.00205 2.678 0.00205 still frameshift type 4 fim
biogenesis protein PilC

PA5043_pilN_at PA5043 2.34 0.000628 2.914 0.000628 type 4 fimbrial biogenes
protein PilN

PA5044_pilM_at PA5044 2.893 0.00702 3.12 0.00702 type 4 fimbrial biogenes
protein PilM

PA4688_hitB_at PA4688 2.282 0.0261 2.513 0.0261 iron (III)-transport syste
permease HitB

PA4747_secG_at PA4747 2.294 0.00628 3.795 0.00628 secretion protein SecG
PA4243_secY_at PA4243 2.914 9.26E-05 6.799 9.26E-05 secretion protein SecY
PA4276_secE_at PA4276 2.274 2.07E-05 4.198 2.07E-05 secretion protein SecE

PA2968_fabD_at PA2968 2.137 0.0131 3.506 0.0131 malonyl-CoA-[acyl-carri
protein] transacylase

PA1609_fabB_at PA1609 2.373 0.0147 2.855 0.0147 beta-ketoacyl-ACP synth

PA2967_fabG_at PA2967 2.387 0.00109 3.416 0.00109 3-oxoacyl-[acyl-carrier-
protein] reductase

PA1610_fabA_at PA1610 2.864 0.00295 4.071 0.00295 beta-hydroxydecanoyl-A
dehydrase

PA3645_fabZ_at PA3645 2.854 2.25E-05 4.671 2.25E-05 (3R)-hydroxymyristoyl-[
carrier protein] dehydra

PA5556_atpA_at PA5556 2.202 0.00136 3.907 0.00136 ATP synthase alpha chai
PA5491_at PA5491 2.354 0.0049 2.854 0.0049 probable cytochrome
PA5561_atpI_at PA5561 2.558 0.0015 2.542 0.0015 ATP synthase protein I
PA3818_at PA4263 2.746 0.00537 5.447 0.00537 extragenic suppressor 

protein SuhB
PA4743_rbfA_at PA4743 2.824 0.0177 4.063 0.0177 ribosome-binding factor
PA5117_typA_at PA5117 3.136 0.000343 5.723 0.000343 regulatory protein TypA
Group II: Upregulation (20 min) – No change (60 min)
PA0524_norB_at PA0524 3.869 0.0456 nitric-oxide reductase 

subunit B
PA3479_rhlA_at PA3479 2.376 0.0364 rhamnosyltransferase ch

PA0177_at PA0177 2.683 0.00294 probable purine-binding
chemotaxis protein

Group III: Downregulation (20 min) – No change (60 min)
PA2193_hcnA_at PA2193 -2.268 0.0324 hydrogen cyanide syntha

HcnA
PA2194_hcnB_at PA2194 -2.762 0.018 hydrogen cyanide syntha

HcnB
PA2195_hcnC_at PA2195 -2.183 0.0437 hydrogen cyanide syntha

HcnC
PA4385_groEL_at PA4385 -2.16 0.00513 GroEL protein

Table 1: List of significantly up or downregulated P. aeruginosa genes that are discussed in this report (Continued)
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clpB Translation, post-
translational modification, 
degradation

10 rplJ Translation, post-
translational modification, 
degradation

17/ rplL Translation, post-
translational modification, 
degradation

t
pheS Translation, post-

translational modification, 
degradation

11 rpsK Translation, post-
translational modification, 
degradation

7 rpsG Translation, post-
translational modification, 
degradation

pheT Translation, post-
translational modification, 
degradation

leuS Amino acid biosynthesis and 
metabolism

alpha glyQ Amino acid biosynthesis and 
metabolism

se argG Amino acid biosynthesis and 
metabolism

serC Amino acid biosynthesis and 
metabolism

d lysC Amino acid biosynthesis and 
metabolism

argH Amino acid biosynthesis and 
metabolism

ate proA Amino acid biosynthesis and 
metabolism

lysA Amino acid biosynthesis and 
metabolism

hate hisB Amino acid biosynthesis and 
metabolism

aroK Amino acid biosynthesis and 
metabolism

fmt Amino acid biosynthesis and 
metabolism

hisE Amino acid biosynthesis and 
metabolism

tase metG Amino acid biosynthesis and 
metabolism

glnA Amino acid biosynthesis and 
metabolism
B

M
C

 G
en

om
ic

s 
20

08
, 9

:4
73

ht
tp

://
w

w
w

.b
io

m
ed

ce
nt

ra
l.c

om
/1

47
1-

21
64

/9
/4

73

PA4542_clpB_at PA4542 -2.77 0.00253 ClpB protein

Group IV: No change(20 min) – Upregulation(60 min)
PA4272_rplJ_at PA4272 5.918 0.00886 50S ribosomal protein L

PA4271_rplL_at PA4271 5.898 0.00319 50S ribosomal protein L
L12

PA2740_pheS_at PA2740 3.323 0.000548 phenylalanyl-tRNA 
synthetase, alpha-subuni

PA4240_rpsK_at PA4240 3.283 0.0292 30S ribosomal protein S

PA4267_rpsG_at PA4267 3.104 0.0138 30S ribosomal protein S

PA2739_pheT_at PA2739 2.142 0.0375 phenylalanyl-tRNA 
synthetase, beta subunit

PA3987_leuS_at PA3987 2.632 0.0216 leucyl-tRNA synthetase

PA0009_glyQ_at PA0009 2.568 0.000361 glycyl-tRNA synthetase 
chain

PA3525_argG_at PA3525 2.45 0.0411 argininosuccinate syntha

PA3167_serC_at PA3167 2.345 0.0396 3-phosphoserine 
aminotransferase

PA0904_lysC_at PA0904 2.337 0.00528 aspartate kinase alpha an
beta chain

PA5263_argH_at PA5263 2.29 0.00853 argininosuccinate lyase

PA4007_proA_at PA4007 2.282 0.0231 gamma-glutamyl phosph
reductase

PA5277_lysA_at PA5277 2.247 0.0334 diaminopimelate 
decarboxylase

PA5143_hisB_at PA5143 2.246 0.00461 imidazoleglycerol-phosp
dehydratase

PA5039_aroK_at PA5039 2.234 0.013 shikimate kinase

PA0018_fmt_at PA0018 2.222 0.0137 methionyl-tRNA 
formyltransferase

PA5067_hisE_at PA5067 2.212 0.00214 phosphoribosyl-ATP 
pyrophosphohydrolase

PA3482_metG_at PA3482 2.043 0.0312 methionyl-tRNA synthe

PA5119_glnA_at PA5119 2.038 0.0442 glutamine synthetase

Table 1: List of significantly up or downregulated P. aeruginosa genes that are discussed in this report (Continued)
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trpS Amino acid biosynthesis and 
metabolism

alaS Transcription, RNA 
processing and degradation

se
glyA3 Amino acid biosynthesis and 

metabolism
tolA Transport of small 

molecules
rter gltP Membrane proteins

secD Membrane proteins
secF Protein secretion/export 

apparatus
tatC Membrane proteins

 
sor

oprL Membrane proteins

 cysA Transport of small 
molecules

 
 

Transport of small 
molecules

in
Transport of small 
molecules
Transport of small 
molecules

Transport of small 
molecules

ne 1- murA Cell wall/LPS/capsule

ne lpxA Cell wall/LPS/capsule

rsor lppL Cell wall/LPS/capsule
hase lpxB Cell wall/LPS/capsule

waaF Cell wall/LPS/capsule

ase
rfaD Cell wall/LPS/capsule

grx Energy metabolism
ain atpG Energy metabolism

atpD Energy metabolism
fdxA Energy metabolism
atpE Energy metabolism
atpB Energy metabolism

Nqr5

nqrE Energy metabolism

ain atpC Energy metabolism
fdx1 Energy metabolism
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PA4439_trpS_at PA4439 2.002 0.0155 tryptophanyl-tRNA 
synthetase

PA0903_alaS_at PA0903 2.099 0.0102 alanyl-tRNA synthetase

PA4602_glyA3_at PA4602 3.347 2.83E-05 serine 
hydroxymethyltransfera

PA0971_tolA_at PA0971 2.249 0.000381 TolA protein

PA5479_gltP_at PA5479 2.413 0.00978 proton-glutamate sympo
PA3821_secD_at PA3821 3.516 0.00324 secretion protein SecD
PA3820_secF_at PA3820 2.206 0.0411 secretion protein sec F 

Protein secretion
PA5070_tatC_at PA5070 2.312 0.0209 transport protein TatC
PA0973_oprL_at PA0973 2.281 0.00672 Peptidoglycan associated

lipoprotein OprL precur
PA0280_cysA_at PA0280 2.018 0.0139 sulfate transport protein

CysA
PA5217_at PA5217 2.141 0.00709 probable binding protein

component of ABC iron
transporter

PA0295_at PA0295 2.643 0.0147 probable periplasmic 
polyamine binding prote

PA4461_at PA4461 2.24 0.00116 probable ATP-binding 
component of ABC 
transporter

PA5503_at PA5503 2.229 0.000446 probable ATP-binding 
component of ABC 
transporter

PA4450_murA_at PA4450 2.855 0.00044 UDP-N-acetylglucosami
carboxyvinyltransferase

PA3644_lpxA_at PA3644 2.83 0.00038 UDP-N-acetylglucosami
acyltransferase

PA5276_lppL_i_at PA5276 2.786 0.0149 Lipopeptide LppL precu
PA3643_lpxB_at PA3643 2.561 0.0247 lipid A-disaccharide synt
PA5012_waaF_at PA5012 2.092 0.00978 heptosyltransferase II
PA3337_rfaD_at PA3337 3.397 0.0498 ADP-L-glycero-D-

mannoheptose 6-epimer
PA5129_grx_at PA5129 3.855 0.0334 glutaredoxin
PA5555_atpG_at PA5555 3.527 0.0287 ATP synthase gamma ch
PA5554_atpD_at PA5554 3.011 0.00384 ATP synthase beta chain
PA3621_fdxA_at PA3621 3.01 0.0042 ferredoxin I
PA5559_atpE_at PA5559 2.734 0.0205 atp synthase C chain
PA5560_atpB_at PA5560 2.433 0.0148 ATP synthase A chain
PA2995_nqrE_at PA2995 2.216 0.00617 Na+-translocating 

NADH:quinone 
oxidoreductase subunit 

PA5553_atpC_at PA5553 2.175 0.00502 ATP synthase epsilon ch
PA0362_fdx1_at PA0362 2.125 0.000346 ferredoxin [4Fe-4S]

Table 1: List of significantly up or downregulated P. aeruginosa genes that are discussed in this report (Continued)
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pyrC Nucleotide biosynthesis and 
metabolism

se
pyrE Nucleotide biosynthesis and 

metabolism
pyrH Nucleotide biosynthesis and 

metabolism
cina purL Nucleotide biosynthesis and 

metabolism

ctase napA Energy metabolism

smic napD Energy metabolism

napF Energy metabolism
ein napB Energy metabolism

bkdA2 Amino acid biosynthesis and 
metabolism

bkdA1 Amino acid biosynthesis and 
metabolism

e-Val lpdV Amino acid biosynthesis and 
metabolism

ctor rmf Translation, post-
translational modification, 
degradation

rpoS Transcriptional regulators
grpE DNA replication, 

recombination, modification 
and repair

hslU Chaperones & heat shock 
proteins

hslV Chaperones & heat shock 
proteins

htpG Chaperones & heat shock 
proteins
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PA3527_pyrC_at PA3527 2.218 0.0211 dihydroorotase

PA5331_pyrE_at PA5331 2.156 0.0166 orotate 
phosphoribosyltransfera

PA3654_pyrH_at PA3654 2.434 0.0212 uridylate kinase

PA3763_purL_at PA3763 2.279 0.00792 phosphoribosylformylgly
midine synthase

Group V: No change(20 min) – Downregulation(60 min)
PA1174_napA_at PA1174 -3.425 0.0251 periplasmic nitrate redu

protein NapA
PA1175_napD_at PA1175 -2.949 0.0134 NapD protein of peripla

nitrate reductase
PA1176_napF_at PA1176 -2.949 0.024 ferredoxin protein NapF
PA1173_napB_at PA1173 -3.077 0.00344 cytochrome c-type prot

NapB precursor
PA2248_bkdA2_at PA2248 -5.076 0.0072 2-oxoisovalerate 

dehydrogenase 
(beta subunit)

PA2247_bkdA1_at PA2247 -9.434 0.00376 2-oxoisovalerate 
dehydrogenase 
(alpha subunit)

PA2250_lpdV_at PA2250 -3.497 0.00576 lipoamide dehydrogenas

Group VI: Downregulation (20 min) – Downregulation (60 min)
PA3049_rmf_at PA3049 -6.25 0.000723 -25.907 0.000723 ribosome modulation fa

PA3622_rpoS_at PA3622 -2.653 0.00961 -2.967 0.00961 sigma factor RpoS
PA4762_grpE_at PA4762 -2.915 0.00501 -0.479 0.00501 heat shock protein GrpE

PA5054_hslU_at PA5054 -3.226 0.000316 -0.428 0.000316 heat shock protein HslU

PA5053_hslV_at PA5053 -2.597 0.00113 -0.352 0.00113 heat shock protein HslV

PA1596_htpG_at PA1596 -2.695 0.00706 -0.434 0.00706 heat shock protein HtpG

Genes are categorized by their transcription patterns and related functions. The microarray results are the mean of four replicates of each gen
aThe microarray results are the mean of four replicates of each gene.
bThe fold change is a positive number when the expression level in the experiment increased compared to the control and is a negative numbe
decreased.

Table 1: List of significantly up or downregulated P. aeruginosa genes that are discussed in this report (Continued)
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Group III: genes downregulated upon 20 minutes exposure
One of the characteristics of this group was the downreg-
ulation of genes involved in hydrogen cyanide produc-
tion: PA2193 (hcnA), PA2194 (hcnB), PA2195 (hcnC). The
hcnABC genes eoncode a cyanide synthase, which forms
hydrogen cyanide from glycine [47]. These results are sim-
ilar to those of a previous study where the hcnA and B
genes were downregulated in P. aeruginosa treated with
peracetic acid for 20 minutes [16]. Hydrogen cyanide is
considered an extracellular virulence factor of P. aerugi-
nosa and its production is transcriptionally regulated by
the anaerobic regulator ANR and the quorum-sensing reg-
ulators LasR and PhlR [48]. It has been established that
hydrogen cyanide is optimally produced when cell densi-
ties are high during the transition from exponential to sta-
tionary phase [49]. P. aeruginosa does not produce cyanide
when it is grown under anaerobic conditions, with nitrate
being used as the terminal electron acceptor [50]. The
down regulation of genes responsible for cyanide produc-
tion, therefore, supports the possibility that P. aeruginosa

experiences an oxygen limiting state characterized by a
transient switch to anaerobic metabolism. The upregula-
tion of the nitric oxide reductase enzyme (norB) in group
II supports this theory. Further, the hcnABC genes did not
exhibit a change in expression levels at 60 minutes, indi-
cating resumption of aerobic metabolism.

Also in this group was the groEL gene which encodes a heat
shock protein. In a previous study, the expression of groEL
was unchanged in P. putida exposed to phenol [32]. The clpB
gene which encodes an ATP dependent protease that func-
tions as part of a chaperone network necessary for the recov-
ery of stress induced protein aggregates was downregulated
2.7 fold. In contrast, the clpB gene has been shown to be
upregulated 2.4 fold in P. putida treated with phenol [32].

Group IV: genes upregulated upon 60 minutes exposure
Group IV consists of genes whose expression levels
increased only in response to 60 minutes of exposure to
OPP (additional file 2). This group contained the highest

Classification of differentially regulated 372 genes into six groups based on their transcription directions after 20 and 60 min-utes exposure to OPPFigure 3
Classification of differentially regulated 372 genes into six groups based on their transcription directions after 
20 and 60 minutes exposure to OPP. Note that genes belonging to the functional class "hypothetical, unclassified, 
unknown" (137 genes) are not represented in this figure. Filled bars indicate upregulation either after one or both treatment 
times. Empty bars indicate downregulation either after one or both treatment times. Group I is made up of genes upregulated 
after both exposure times. Group II contains genes upregulated at 20 minutes, with no significant changes after 60 minute 
exposure. Group III consists of genes downregulated after 20 minutes, with no significant changes upon 60 minutes of treat-
ment. Group IV is made up of genes that were upregulated in response to 60 minutes of treatment. Group V is made up of 
genes that were downregulated upon 60 minutes of treatment. Group VI is made up of genes that were downregulated upon 
both exposure times.
Page 11 of 18
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number of genes (227 genes) among the six groups gener-
ated based on gene transcription direction. The signifi-
cantly higher number of genes in this group compared
with the number of genes in group II (genes upregulated
upon 20 minutes exposure), suggests that P. aeruginosa
significantly adjusts its transcriptional profile after 60
minutes of treatment with OPP.

The most dominant classes in this group were "amino
acid biosynthesis and metabolism", "membrane pro-
teins", "nucleotide biosynthesis and metabolism", "trans-
lation, post-translational modification and degradation"
and "transport of small molecules".

Compared to the other functional classes in this group, a
higher number of genes were involved in amino acid bio-
synthesis and in translation, post-translational modifica-
tion and degradation. Active protein synthesis was
reflected in the upregulation of several genes coding for 30
and 50S ribosomal proteins, aminoacyl-tRNA synthetases
associated with alanine (alaS), formylmethionine (fmt),
glycine (glyQ), leucine (leuS), methionine and selenome-
thionine (metG), phenylalanine (pheS and pheT) and tryp-
tophan (trpS). In addition, genes involved in the
biosynthesis of several amino acids: arginine and proline
(argG, argH), glutamine (glnA), lysine (lysA, lysC), gluta-
mate (proA, gltP), histidine (hisB, hisE), phenylalanine
(aroK), serine (serC, glyA3), were also upregulated. These
results are similar to those of a previous study [32] which
indicated that the following enzymes were induced under
phenol stress in P. putida: ArgD, ProA, GltD (involved in
the glutamate biosynthetic pathway), TrpB and TrpS
(belonging to aromatic amino acid biosynthetic path-
ways), and CysK and GlyA-2 (involved in the serine bio-
synthetic pathway). Based on these results, the authors
suggested that phenol-stressed cells may experience
amino acid deficits, and hence a shortage of proteins
required for growth and survival [32]. Interestingly it has
been shown that E. coli can adjust its rate of tryptophan
biosynthesis following a shift to stressful nutritional con-
ditions [51]. In contrast, a similar study in our laboratory
investigating the effect of OPP on S. aureus [84] revealed
that several genes involved in amino acid anabolism and
specifically lysine and diaminopimelic acid (DAP) bio-
synthesis were markedly downregulated. This suggests
that the effect of 0.82 mM OPP on amino acid metabo-
lism in P. aeruginosa and S. aureus differ.

Among the genes coding for proteins involved in the
transport of small molecules was the tolA gene, which
codes for the TolA protein. The TolA protein is an inner
membrane protein belonging to the TolQRAB protein
complex [52] and is necessary for the uptake of the group
A colicins and Tol-dependent phage [53,54]. Tol proteins
are also required to maintain the integrity of the bacterial

cell envelope structure [52,55]. Mutations in TolA have
been shown to cause increased sensitivity to detergents
and certain antimicrobials and the leakage of periplasmic
proteins [56]. The upregulation of tolA after 60 minutes of
exposure to OPP suggests a protective role for TolA, possi-
bly related to the maintenance of the cell membrane struc-
ture.

In line with the upregulation of genes in the class of
"transport of small molecules" after 60 minutes, was the
induction of several genes belonging to the classes of
"membrane proteins" and "protein secretion/export
apparatus". The upregulation of the glycerol-3-phos-
phate transporter gene (gltP) and the proton glutamate
symporter (gltP) is indicative of active transport across
the cell membrane. Further evidence of translocation
was seen in the upregulation of the components of trans-
location pathways such as the Sec dependent pathway
(secD, secF) which is driven by ATP hydrolysis and the
twin-arginine translocation (Tat) pathway (tatC) which
uses energy derived from the proton motive force to
translocate proteins across the cytoplasmic membrane
[57,58]. Interestingly, E. coli with mutations in tatC,
which is critical for the functioning of the Tat system,
show pleitropic defects in the cell envelope, leading to
hypersensitivity to some detergents and drugs [59,60].
The peptidoglycan associated lipoprotein precursor
(oprL), which has been reported to play a protective role
against hydrogen peroxide treatment in biofilms of P.
aeruginosa [61] was also upregulated. Further, several
genes encoding proteins in the ABC transport system,
including the sulfate transport protein (cysA), probable
protein binding component of iron ABC transporter
(PA5217), probable periplasmic polyamine binding
protein (PA0295) and probable ATP binding compo-
nent of ABC transporters (PA4461, PA5503) were also
upregulated in this group. These findings possibly imply
that membrane components of P. aeruginosa were altered
and that activated and or facilitated transport of ions,
sugars, amino acids and other solutes necessary for cell
survival was boosted after 60 minutes of exposure to
OPP. It therefore appears that both the maintenance of
active transport across and the integrity of the cell mem-
brane are necessary for cell survival after 60 minutes of
OPP treatment.

This group also contained six genes: rfaD, murA, lpxA, lppL,
lpxB and waaF that are involved in the lipopolysaccharide
(LPS) biosynthetic pathway. LPS is the main component
of the outer cell wall and upregulation of its synthesis sug-
gests that adaptation to OPP treatment in P. aeruginosa
may involve cell wall modification. Similar results were
obtained in P. putida, where the LpxC, MurA and the VacJ
(a putative lipoprotein) proteins were upregulated after
exposure to phenol [32].
Page 12 of 18
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Another predominant functional group in this class con-
tained genes involved in energy metabolism. Genes
encoding several components of the F1ATP synthase
(atpB, atpC, atpD, atpG) involved ATP generation by oxi-
dative phosphorylation and elements mediating electron
transfer (glutaredoxin (PA5129), ferredoxin I (PA3621),
ferredoxin (PA0362) and the Na+-translocating NADH:
quinone oxidoreductase subunit Nqr5 (PA2995) were
upregulated. Other components involved in the oxidative
phosphorylation pathway: (PA5561 (atp1) and PA5556
(ATP synthase alpha chain) were upregulated after both
20 and 60 minutes (PA5561 (atp1) and PA5556 (ATP syn-
thase alpha chain). This corroborates the theory that
energy production through this route is essential for OPP-
treated cells.

An interesting observation was the upregulation of several
genes involved in the biosynthesis of purines and pyrimi-
dines after 60 minutes of treatment with OPP. The genes:
pyrC, pyrE, pyrH, belonging to the pyrimidine biosynthetic
operon that has been described in Bacillus subtilis [62] and
the purL gene involved in purine biosynthesis [63] were
upregulated, suggesting that an increase in nucleotide bio-
synthesis may contribute to the adaptive response of P.
aeruginosa to OPP. In contrast, the quantities of the PurM,
PurL and PyrH proteins have been reported to be down-
regulated after exposure to phenol for 60 minutes [32].

Group V: genes downregulated upon 60 minutes exposure
This group contained a total of 70 genes (additional file 2)
that were downregulated after 60 minutes of treatment
with OPP. Genes belonging to the functional classes of
"amino acid biosynthesis and metabolism", "energy
metabolism and "putative enzymes" contained a rela-
tively higher number of genes. It was interesting to find
the napA, B, D and F genes among the genes in the class of
energy metabolism. These genes are some of the compo-
nents of the nap operon that has been identified in many
gram negative bacteria [64]. The E. coli nap operon (nap-
FDAGHBC) encodes a periplasmic nitrate reductase [65].
The respiratory periplasmic nitrate reductase in denitrify-
ing P. sp. Strain G-179 has been reported to support
anaerobic growth in the presence of nitrate [66]. Most
Nap enzymes consist of a large catalytic sub subunit
(NapA) and a small diheme cytochrome c (NapB). NapC
is a membrane bound tetraheme cytochrome c that trans-
fers electrons from the quinol pool in the cytoplasmic
membrane to NapAB. NapD is found in the cytoplasm
and plays a role in the maturation of the enzyme prior to
export [67] and NapF is a non-heme iron-sulfur protein
[68]. The downregulation of the nap A, B, D and F genes
in this study suggests that after 60 minutes of OPP treat-
ment, P. aeruginosa probably maintains aerobic growth.
This is in contrast to after 20 minutes of treatment when
the nitric oxide reductase gene was upregulated, suggest-

ing a possible transient switch to anaerobic respiration
(table 1).

This group also contained several genes involved in
valine, leucine and isoleucine degradation. In particular,
PA2247 (bkdA1), PA2248 (bkdA2), and 2250 (lpdV)
which are involved in the conversion of valine, leucine
and isoleucine to alkyl-CoA derivatives that feed into the
TCA cycle, pyrimidine metabolism and propanoate
metabolism were downregulated. Similarly, the bkdA1,
bkdA2 and lpdV genes were downregulated in P. aeruginosa
after exposure to peracetic acid for 20 minutes [16]. The
results of the present study suggest that the synthesis of
these amino acids was being inhibited after 60 minutes of
OPP treatment with concomitant inhibition of energy
production through the TCA cycle. Further, several genes
involved in the synthesis of acetylCoA were present in this
group. In particular, PA2013 and PA0745 (probable
enoylCoA hydratases) involved in the synthesis of acetyl-
CoA from Lysine and butanoate respectively and PA3417
(probable pyruvate dehydrogenase E1 component) which
catalyzes the transformation of pyruvate to acetylCoA
were downregulated. These results support the fact that
energy production through the TCA cycle was being inhib-
ited after 60 minutes of exposure to OPP.

Group VI: genes downregulated at 20 and 60 minutes exposure
The most downregulated gene in this group was the ribos-
ome modulation factor gene (rmf), which exhibited a fold
change of -6.25 after 20 minutes of OPP treatment and -
25.9 after 60 minutes. The ribosome modulation factor
(RMF) is a ribosome associated protein that is produced
by E. coli during slow growth at exponential phase [69]
and upon entry into stationary phase [70]. RMF is consid-
ered a protective factor of ribosomes against stresses such
as heat shock, acidic/basic pH and high osmolarity during
stationary phase [71]. Mutant stationary phase E. coli
strains without functional RMF are more susceptible to
osmotic stress [72] and heat stress [73]. The production of
RMF by stationary phase cells has been linked to the
detection of the dimerized form of 70S ribosomes: 100S
ribosomes with no translational activity [71,74,75].

In exponentially growing E. coli cells not treated with any
chemicals and in those treated with acidifying agents, it
was found that rmf expression was growth rate dependent
and there was an inverse relationship between rmf expres-
sion and growth rate [69,76]. It has been postulated that
the function of RMF in slow growing exponential phase
cells is to promote more efficient protein synthesis
through the inactivation of excess ribosomes, thereby
reducing competition for protein synthesis factors [76].
Our results contrast those of previous studies which have
reported that rmf is expressed in slow growing cells during
exponential phase [69,76]. It was surprising that rmf
Page 13 of 18
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expression was downregulated upon both treatment
times, but more significantly after 60 minutes, given the
fact that OPP-treated P. aeruginosa cells in this study were
also slow growing during exponential phase. However,
more investigation is required to determine the mecha-
nism by which OPP treatment influences transcriptional
control, leading to downregulation of the expression of
the rmf gene in P. aeruginosa.

The rpoS gene which encodes RpoS, an alternative sigma
factor of RNA ploymerase was also downregulated after
both exposure times. RpoS is known to participate in the
stress response of both E. coli and P. aeruginosa [77,78].
Although RpoS is more widely considered a global regula-
tor in a complex regulatory network that controls the
expression of several stationary-phase inducible genes, it
has been demonsrated that RpoS also acts as a master reg-
ulator of gene expression in exponentially growing E. coli
cells exposed to osmotic stress [79]. Further, a previous
study revealed that cell viability was slightly decreased in
E. coli cells containing mutations in rmf and rpoS [80]. The
downregulation of the rmf and rpoS genes may therefore
be indicative of the mechanism of action by which OPP
causes a growth inhibition in P. aeruginosa.

This group also contained four genes that are involved in
the P. aeruginosa heat shock response: grpE, hslU, hslV and
htpG. In contrast to these results, the HtpG and GrpE pro-
teins have been reported to be upregulated in P. putida
exposed to phenol and to hydrochloric acid [32,81]. The
hslVU operon encodes two heat shock proteins, HslV and
HslU that function together as an ATP-dependent pro-
tease [82]. The hslUV operon was upregulated in E. coli
after exposure to acid stress for 10 minutes [81]. This
result suggests that transcriptional regulation of the
expression of these heat shock proteins during stress may
vary depending on the nature of the environmental stress.

Validation of microarray data using real-time PCR
In order to validate the relative transcript levels obtained
by the microarray analysis, we employed quantitative real-
time PCR on six genes. These genes were selected because
they displayed a wide range of mRNA level changes (-25-
to 6-fold). Table 2 indicates that our microarray results
were in agreement with quantitative real-time PCR analy-
ses of the selected genes.

Conclusion
The present study represents the first genome-wide
response of P. aeruginosa exposed to 0.82 mM OPP. The
results from this study indicate that after 20 minutes of
OPP exposure, genes involved in anaerobic metabolism
and swarming motility were upregulated. We suggest that
P. aeruginosa undergoes a switch to denitrification as indi-
cated by downregulation of cyanide production which is

indicative of anaerobic respiration. OPP treatment also
caused the downregulation of the genes encoding the
ribosome modulation factor (rmf) and an alternative
sigma factor (rpoS) of RNA polymerase which have been
linked to decreases in cell viability when mutated. The
repression of these genes may be contributory to the
growth inhibition observed after P. aeruginosa was
exposed to OPP and may reflect the mechanism of action
by which OPP reduces the viability of P. aeruginosa cells,
leading to the observed growth inhibition. We suspect
that the continuous marked upregulation of translation
after both 20 and 60 minutes and of amino acid biosyn-
thesis following 60 minutes exposure to OPP are conse-
quential responses to combat this growth repression. Our
results suggest that these responses may involve the upreg-
ulation of genes involved in the synthesis of membrane
transport and virulence proteins and also proteins
involved in the maintainanceof the integrity of the cell
membrane. In addition, after 60 minutes of OPP treat-
ment, the adaptive response to OPP treatment may
involve cell wall modification evidenced by the upregula-
tion of lipopolysaccharide biosynthesis genes. It is worth
noting that in contrast to the results of this study, we have
observed that in S. aureus, OPP treatment led to downreg-
ulation of amino acid anabolism in general and specifi-
cally lysine and diaminopimelic acid (DAP) biosynthesis
genes (unpublished data). It is therefore apparent that
OPP exerts differential effects on amino acid metabolism
in P. aeruginosa and S. aureus.

This gene expression profile can now be employed to
more profoundly understand the mechanisms by which
OPP exerts a killing effect on P. aeruginosa and how this
organism develops resistance to phenolic disinfectants in
general and to OPP in particular. The information from
this study provides useful information that will benefit
further research on the toxicogenomic impact of phenolic
biocides on P. aeruginosa. Further, considering that multi-
cellular behavior in bacteria such as swarming motility is
an adaptation to environmental stress, it will be interest-
ing to investigate the comparative response of sessile cells
versus cells exhibiting swarming motility to OPP treat-
ment.

Methods
Bacterial growth and treatment with OPP
Pseudomonas aeruginosa PAO1 was grown at 37°C for 17
hours on Luria-Bertani (LB) agar. An isolated colony was
inoculated into 100 ml of sterilized LB broth (10 g of tryp-
tone, 5 g of yeast extract and 10 g of sodium chloride per
liter) and incubated overnight for 17 hours at 37°C with
shaking at 250 rpm. A 1:100 dilution of the culture was
performed using pre-warmed LB broth. The diluted cul-
ture was incubated at 37°C with shaking at 250 rpm until
a final optical density (OD600) of 0.8 (early logarithmic
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phase) was attained. A further 1:10 dilution was per-
formed using LB broth and incubated at 37°C with shak-
ing at 250 rpm. When the OD600 of the 1:100 dilution
reached 0.8, the culture was incubated at 37°C with shak-
ing at 250 rpm with various concentrations of OPP
(Sigma-Aldrich, Inc., St Louis, MO) and the OD600 of the
growth culture was determined at intervals of ten minutes
for a total time of 60 minutes. A concentration of 0.82
mM OPP, with treatment times of 20 and 60 minutes were
targeted for this study.

RNA isolation
Total RNA was extracted after 20 and 60 minutes incuba-
tion with 0.82 mM OPP and without OPP (control). The
RNA extraction procedure was carried out using the RNe-
asy mini kit (Qiagen, Inc., Valencia, CA) according to the
manufacturer's instructions. Briefly, 1 ml of bacterial cul-
ture was added to 2 ml of RNAprotect bacteria reagent
(Qiagen, Inc., Valencia, CA). Centrifugation (5000 g for
10 minutes) of the mixture was performed to precipitate
the cells. The harvested cells were incubated in TE buffer
with 1 mg/ml lysozyme (Fisher Scientific, Pittsburgh, PA).
Total RNA was eluted in 50 ml of RNase free water
(Ambion Inc., Austin Texas) using kit supplied columns
containing silica gel membranes. The quantity of eluted
RNA was determined using the NanoDrop spectropho-
tometer (NanoDrop Technologies, Inc., Wilmington,
DE). RNA quality was examined using the RNA 6000
Nano Labchip with an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA).

cDNA synthesis and labeling
cDNA was synthesized from 12 μg of total RNA using ran-
dom primers (Invitrogen, Carlsbad, CA)and SuperScript II
reverse transcriptase (Invitrogen, Carlsbad, CA) following
the Affymetrix P. aeruginosa GeneChip arrays protocol
(Affymetrix, Inc., Santa Clara, CA). Spike controls con-
taining RNA transcripts from several Bacillus subtilis genes
were included in the RNA mixtures as internal controls to
monitor the efficiency of labeling, hybridization and
staining. The reaction mixture was incubated at 25° for 10
minutes, 37°C for 60 minutes and 42°C for 60 minutes
followed by inactivation of the enzyme at 70°C for 10
minutes. Purification of cDNA was carried out using the
QIAquick PCR purification kit (Qiagen, Inc., Valencia,
CA). The cDNA was fragmented at 37°C for 10 minutes in
a reaction mixture consisting of purified cDNA and DNase
I (Roche Applied Science, Indianapolis) in One-Phor-All
buffer (Invitrogen, Carlsbad, CA) in the order of 0.06 U
DNase/μl of cDNA. The quality of fragmented cDNA was
examined using the RNA 6000 Nano Labchip with an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA). Labeling of the 3' termini of fragmented cDNA was
performed using the Enzo BioArray terminal labeling kit
with Biotin-ddUTP (Enzo Life Sciences, Inc., Farmingdale,
NY).

Hybridization, processing and scanning
Array hybridization and processing were carried out
according to instructions provided in the affymetrix
expression analysis technical manual: chapters 5 and 6

Table 2: Transcript level comparison of P. aeruginosa genes between real-time PCR and microarray analyses

Gene amRNA level change with microarray bmRNA level change with real-time PCR Forward primer 
sequence (5'-3')

Reverse primer sequence 
(5'-3')

Fold change Fold change

20 min 60 min 20 min 60 min

PA4243 2.914 6.799 3.605 (± 1.55) 7.378 (± 0.7) ATGGCTAAGCAAGGT
GCTCTCTCT

ACGATGATCGCCAG
GAACAGGAAA

PA2193 -2.268 -1.967 (± 1.06) TGAACGTCAACACGA
TATCCAGCC

ATTGAGCACGTTGAG
CACGGTCT

PA1173 -3.077 -3.03 (± 5.64) ATCGACAAGGACAG
CAACAAGTGC

GTCCATGTAGTGGGT
GATGCTGAT

PA3049 -6.25 -25.907 -10.196 (± 0.14) -48.503 (± 0.35) TCGTGATCTTTGTCC
GTTCACCCA

CGTGCTGGAGTTGAT
TGAGACGTT

PA3724 -2.762 -10.256 -5.856 (± 0.21) -14.928 (± 1.27) TCATCACCGTCGACA
TGAACAGCA

AGTCCCGGTACAGTT
TGAACACCA

PA3622 -2.653 -2.967 -1.954 (± 1.95) -5.924 (± 1.60) TGACCACGATGATGA
AGTGCTCCT

TTGGAAGAGAAGGAA
GTGGTGGCT

cPA3001 1.00 1.00 1.00 1.00 GCACCATCACCATCG
ACGAAGAAA

TCTTGATGCCGTACT
GGGTGTAGT

The real time PCR results are the mean of three biological replicates with three technical replicates for each gene. The microarray results are the 
mean of four replicates of each gene.
aThe microarray results are the mean of four replicates of each gene.
bThe real time PCR results are the mean of three biological replicates with three technical replicates for each gene.
cInternal control: glyceraldehyde-3-phosphate dehydrogenase
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[83]. The hybridization solution consisted of the frag-
mented/labeled cDNA, B2 control oligonucleotide, MES
hybridization buffer, bovine serum albumin and dime-
thyl sulfoxide (DMSO) in a final volume of 200 μl. The
mixture was hybridized onto P. aeruginosa GeneChip
arrays (Affymetrix, Inc., Santa Clara, CA) at 50°C for 16
hours with tumbling. The arrays were washed and stained
using the Affymetrix GeneChip hybridization, wash and
stain kit containing the stain cocktails 1 and 2 and the
array holding buffer. The array staining and washing proc-
ess was performed using the GeneChip Fluidics station
450 (Affymetrix). Processed arrays were scanned with the
Affymetrix GeneChip Scanner 3000.

Data analysis
Data analysis was carried out using the Affymetrix Gene-
Chip Operating Software (GCOS), version 1.0 and Gene-
Spring Version 7.3 (Agilent Technologies). The following
parameters were employed for expression analysis using
GCOS: α1 = 0.04, α2 = 0.06, τ = 0.015 and target signal was
scaled to 150. Genes that were assigned "absent calls"
from 50% or more of the replicates in GeneSpring were
not included in the analysis. Gene expression changes
with statistical significance were identified by 1-way
ANOVA (p cutoff value = 0.05). Fold changes were calcu-
lated as the ratios between the signal averages of four
untreated (control) and four OPP-treated (experimental)
cultures. Genes with a two-fold or more induction or
repression were used in this analysis.

Real-Time PCR analysis
Transcript level changes obtained from microarray analy-
sis (six genes) were evaluated using quantitative real-time
PCR. The genes and primer sequences employed for the
real-time PCR analysis are listed in table 2. The house-
keeping gene, glyceraldehyde-3-phosphate dehydroge-
nase (PA3001) was used as an endogenous control. Real-
time PCR was performed using the iCycler iQ Real-Time
PCR Detection System with iScript cDNA Synthesis Kit
and IQ SYBR Green Supermix (BioRad Laboratories, Inc.,
Hercules, CA). For each gene, three biological replicates
and three technical replicates were employed. Reaction
mixtures were incubated for 3 minutes at 95.0°C, fol-
lowed by 40 cycles of 10 seconds at 95.0°C, 30 seconds at
55.0°C, and 20 seconds at 72.0°C. PCR efficiencies were
also derived from standard curve slopes in the iCycler soft-
ware v. 3.1 (BioRad Laboratories, Inc., Hercules, CA). To
evaluate PCR specificity, melt curve analysis was per-
formed and this resulted in single primer-specific melting
temperatures. In this report, relative quantification based
on the relative expression of a target gene versus the glyc-
eraldehyde-3-phosphate dehydrogenase gene was utilized
to determine the transcript level changes.
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