# **Comparative Global Transcriptome Analysis of Sodium Hypochlorite, Peracetic Acid, and Hydrogen Peroxide on** *Pseudomonas aeruginosa*

Author(s): Affiliation(s):

David A. Small<sup>1</sup>, Wook Chang<sup>1</sup>, William E. Bentley<sup>1</sup>, Freshteh Toghrol<sup>2</sup> s): <sup>1</sup>Center for Biosystems Research, University of Maryland Biotechnology Institute

<sup>2</sup>U.S. EPA/OPPTS/OPP/BEAD/Microarray Research Laboratory

### Background

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen capable of infecting almost any immunocompromised tissue. Disinfectants are routinely used in hospitals and healthcare facilities for surface sterilization; however, the extent of the resistance of *P. aeruginosa* to disinfectants remains unknown. Consequently, nosocomial infections from *P. aeruginosa* result in considerable casualties and economic hardship. The goal of this research is to analyze genome-wide changes in *P. aeruginosa* in response to oxidative antimicrobial exposure using DNA microarrays.

#### Methodology

P. aeruginosa was incubated for 20 min with sodium hypochlorite, peracetic acid, or hydrogen peroxide concentrations causing a strong growth inhibition, but not cellular death, along with a set of water-diluted control samples. Total RNA was then extracted and reverse-transcribed to CDNA, and labeled cDNA was hybridized onto the Affymetrix *P. aeruginosa* GeneChip array. The antimicrobial samples were then normalized to the control samples and compared using GeneSpring GX gene-expression software. Real-time quantitative polymerase chain reaction was used to validate the microarray data.



110

## Function classification of the number of genes with statistically significant increased and decreased mRNA levels

The number of genes are shown for each functional classification based on a 2-fold or more increase (upregulated) or a 2-fold or more decrease (downregulated) in mRNA transcript level for 4.4 mM sodium hypochlorite (a), 1 mM peracetic acid (a), and 1 mM hydrogen peroxide (a) after a 20 min exposure to each corresponding disinfectant.



# Principal Component Analysis (PCA) of Variance on Conditions

A PCA on conditions reveals that the control samples (■), 4.4 mM sodium hypochlorite-exposed samples (■), 1 mM peracetic acid-exposed samples (■), and 1 mM hydrogen peroxide-exposed samples (■) group into distinct regions indicating that all three oxidative disinfectants did not affect the cells in the same way.



#### 2-Fold or More Change summary of the Statistically Significant Genes

From the 5,670 genes in the *P. aeruginosa* genome, 3,197 genes showed statistical significance based on a 1-way ANOVA (95% confidence level).

| Disinfectant                      | Genes Upregulated | Genes Downregulated |
|-----------------------------------|-------------------|---------------------|
| NaOCI                             | 457               | 625                 |
| CH <sub>3</sub> CO <sub>3</sub> H | 362               | 413                 |
| H <sub>2</sub> O <sub>2</sub>     | 187               | 204                 |

# **Conclusions**

- Sodium hypochlorite-exposed cells had downregulations of the genes involved in oxidative phosphorylation, electron transport, and glucose metabolism, and upregulation of organic sulfur transport genes.
- Hydrogen peroxide-exposed cells had an upregulation of DNA protection genes that translated into an upregulation of pyocin (bacteriocins) synthesis genes.
- Peracetic acid-exposed cells had a downregulation of glucose transport genes, but an upregulation of glycerol transport and metabolism genes.
- All three disinfectants resulted in an increase in the genes encoding adaptive and protective process.



epascienceforum